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We study the time evolution of N-level quantum systems under quasiperiodic 
time-dependent perturbations. The problem is formulated in terms of the spec- 
tral properties of a quasienergy operator defined in an enlarged Hilbert space, 
or equivalently of a generalized Floquet operator. We discuss criteria for the 
appearance of pure point as well as continuous spectrum, corresponding respec- 
tively to stable quasiperiodic dynamics and to unstable chaotic behavior. We 
discuss two types of mechanisms that lead to instability. The first one is due to 
near resonances, while the second one is of topological nature and can be 
present for arbitrary ratios between the frequencies of the perturbation. We 
treat explicitly an example of this type. The stability of the pure point spectrum 
under small perturbations is proven using KAM techniques. 

KEY WORDS: Quasiperiodic; Floquet operator; quasienergy; quantum 
chaos; KAM; Rabi oscillations. 

1. I N T R O D U C T I O N  

It is a wel l -known fact that  the time evolut ion of an isolated q u a n t u m  
system, described by a Hami l ton i an  H 0 with a discrete spectrum, cannot  
exhibit the type of behavior  usually associated with determinist ic chaos of 

classical systems. This follows from the fact that, independent ly  of the 
na ture  of the dynamics  generated by the corresponding classical 

Hami l t on i an  (when there is one), the q u a n t u m  time evolut ion of the state 
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~0(t) is almost-periodic, since it can be expanded in terms of the eigen- 
functions ~Pn of Ho, with eigenvalues En: 

q (t) c.e-iE~ (1.1) 
n 

As a consequence, quantities like the expectation value of the energy 
( r (t) Ho ~0 ( t ))  or the correlation function 

S~o(t) = lirnoo ~ f]ds (~o(t + s), ~o(s)) (1.2) 

are also almost-periodic. 
Of course when the spacing between the levels becomes very small, as 

is always the case when we deal with macroscopic systems, the quantum 
evolution can, and generally will, imitate various features of classical 
behavior to any desired degree of accuracy. Interestingly enough, however, 
even very small quantum systems such as atoms and molecules can exhibit 
nontrivial dynamical behavior whenever they are subjected to a time- 
dependent external perturbation. The general problem is then the 
following: Suppose we subject the system described by H 0 to a time- 
dependent field; does the peturbed system have a behavior that is qualita- 
tively similar to the unperturbed one? In particular: is the evolution still 
almost-periodic or it does it have a more complicated chaotic behavior? In 
the latter case one can investigate properties like the rate of decay of 
correlations or whether quantities like the energy stay bounded. 

This question of stability has been studied for different kinds of 
time-dependent forces, from periodic (1-5) to fully stochastic, (6) passing 
through quasiperiodic (v-t2) and deterministic forces with varying degrees of 
ergodicity. (13' 14) 

In the case of periodic forces the question of stability can be 
formulated in terms of the spectral properties of the quasienergy 
operator(15 ~9) or equivalently of the Floquet operator. Bellissard (=~ 
proposed a generalization of the quasienergy operator to a large class of 
time-dependent forces. Some aspects of this approach were studied in 
ref. 21 for the case of quasiperiodic forces, where a generalized Floquet 
operator was introduced whose spectral properties are equivalent to the 
ones of the quasienergy operator. It was noted in ref. 21 that there are 
important qualitative differences between the periodic and quasiperiodic 
cases. These are manifested particularly clearly when the Hilbert space Jt ~ 
is finite-dimensional, e.g., a spin-l/2 system in a variable magnetic field, or 
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an idealized atom (where one can restrict oneself to a finite number of 
levels) in a radiation field. In the periodic case the Floquet operator is 
a finite-dimensional unitary matrix, and thus the spectrum of the 
quasienergy operator is always pure point. This need not be so for 
quasiperiodic fields. Numerical studies with a field containing two incom- 
mensurate frequencies reported in refs. 8 and 10 show an apparently con- 
tinuous power spectrum leading to chaotic behavior with asymptotic decay 
of correlations. However, the analysis of this system by different methods (9~ 
involving double Poincar6 sections indicates that its evolution is regular 
(almost-periodic with very long quasiperiods). On the other hand, an 
example was constructed in ref. 11, with the time dependence of the field 
based on the Fibbonacci sequence, for which one can explicitly show that 
generically the time evolution is not almost-periodic. In the present work 
we give a qualitative interpretation of the simulations of refs. 8-10 and then 
carry out some rigorous analysis on conditions for regular and disordered 
behavior under smooth quasiperiodic time-dependent perturbations. We 
will discuss two different types of mechanism: the first one involves 
phenomena that are close to resonances, i.e., they appear when the ratio of 
the frequencies is well approximated by rationals. The second mechanism 
is of topological nature and can appear for arbitrary frequencies. It 
generally becomes observable only when the intensity of the perturbation 
is larger than some critical value. Physical examples of such instabilities 
occur, e.g., in microwave ionizations of Rydberg atoms (22) or of electrons 
attracted to a surface of liquid helium.(23) The close to resonant mechanism 
appears already in the simplest case in which ~ is one-dimensional. By 
diagonal composition one obtains also examples for the N-level models. 
For the second kind one needs at least two degrees of freedom, and one 
requires nonperturbative methods. 

In Section 2 we discuss the example due to Pomeau e t  al. (8) and give 
an explanation of the apparently chaotic behavior, which, however, 
appears to be regular under the double Poincar6 section analysis of ref. 9. 

In Section 3 we introduce the notation and give some general results 
for quasiperiodic forces. In Section 4 we discuss, for the scalar case J f  = C, 
criteria for point spectrum and for continuous spectrum arising from a 
close to resonance mechanism. In Section 5 we discuss as an example a 
two-level system (~f = C 2) which has absolutely continuous spectrum for 
any ratio of frequencies that is produced by a topological mechanism. In 
Section 6 we state a stability result or small perturbations. The proof 
involves a small-denominator problem that is treated with a KAM-type 
algorithm. 
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2. I N T E R P R E T A T I O N  OF N U M E R I C A L  S T U D I E S  

A particularly simple example, which was treated numerically in refs. 8 
and 10, is a two-level system with Hamiltonian 

H =  v (10 O1)+gF(t)(O 1 10) (2.1) 

with F(t) = cos(co~ t) cos(co 2 t), v = 1/2, 091 = 17711/28657, co 2 = 4637/13313, 
acting on vectors (~(1), ~(2)). For g =  5 one observes a power spectrum 
that looks quite broad-banded and is interpreted as signature of chaotic 
behavior. On the other hand, the analysis of the same model performed by 
different methods involving double Poincar6 sections indicates that the 
time evolution is regular, (9) quasiperiodic with a long quasiperiod. We 
propose the following interpretation of these numerical data: The relevant 
parameter of the problem is the quotient g/v. The two limiting cases g = 0 
and v = 0 can be solved explicitly and have regular quasiperiodic solutions. 
For g = 0 the time evolution operator is 

U(t's)=(e-iv(' s) 0 e iv( t -s)  0 ) (2.2) 

For v = 0 the Hamiltonian can be diagonalized by the unitary transforma- 
tion 

We have 

1 1 1) 
RtHR=gF(t)(Io 0 1 )  

and therefore 

U(t'O)=R( e igc(t)O e +ig~ ) R* 

' . . . .  sin(col q- CO2)t 
G(t)= fo dt' lq, t )= 2~1~-~--~2 ) }- 

sin(m1 - co2)t 

(2.3) 

2(m I - co2) 

(2.4) 

From this expression we see that the evolution for v = 0  is certainly 
quasiperiodic, but if g is large, the quasiperiods can be very long. The 
quasiperiodicity implies that U(t, 0) can be represented by a series of the 
form 

U(t, 0 ) =  ~ C;~1,,2e i(n~+"2~ 
n l , n 2  
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i.e., its Fourier spectrum consists of a set of frequencies that is dense. For  
small g only few of these frequencies appear with a relevant weight and the 
dynamics is simple. As g increases, more frequencies have important weight 
and it becomes very hard to distinguish numerically the dense Fourier 
spectrum from a continuous one. Therefore if a correlation function or 
power spectrum is computed using a time series that does not cover a long 
enough time interval, it can look chaotic. This is illustrated in Fig. 1, which 
shows the power spectrum corresponding to the observable 

A(t) - =  ] 1 / / ( 2 ) ( / ) 1 2  - [t//(x)(t)l 2 -= A(0) cos[2ga(t)] (2.5) 

computed using a time series of 215 points and a maximal t equal to 8000. 
This power spectrum is qualitatively very similar to the one computed in 
ref. 8 for the same parameters and the full Hamiltonian. 

A perturbation analysis like the one described in Section 6 provides 
the result that for fixed v the dynamics will be almost-periodic for small g 
but also for very large g (since the limit g--+ oo is equivalent to the limit 
v ~ 0). From these arguments we conclude that the apparently irregular 
behavior observed in refs. 8 and 10 corresponds to the asymptotic regime 
of g-+ 0% which is complicated but quasiperiodic nonetheless in accord- 
ance with ref. 9. 

This example shows that the interpretation of numerical simulations of 
these models is a quite subtle problem. In what follows we will discuss 
analytical methods that provide some criteria for regular as well as for 
irregular behavior, and we will decribe a model for which one can show 
that the dynamics is chaotic. 

Fig. 1. 

-5 

o 20 
v 

Power spectrum corresponding to A(t)= 10(2)(t)J 2- I~,(l)(t)l 2 for g=5 computed 
from a time series of 215 points and maximal t equal to 8000. 
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3. G E N E R A L  F O R M A L I S M  

We consider time-dependent Hamiltonians of the type 

H =  n ( o ( t ) )  = n o ( x  ) + V(x; 0(t)) (3.1) 

on a Hilbert space Yf, where x are the variables of the system and the force 
0(t) = g,0 e ~ '  is described by an invertible flow on a compact manifold ~ '  
with an ergodic invariant measure #. Under some regularity conditions on 
V there is a unitary time evolution operator U(t, s; 0). The generalized 
quasienergy operator (QEO) K is defined (2~ on an enlarged space 
~)r r = ~ @ L2(d[ , d#) by 

[e-im~g](0) - U(0, - t ; O ) ~ - - t t g ( O ) - J _ t U ( t , O ; O )  ~g(0) (3.2) 

where [ J -_~g] (0 )=  ~(g_,0) .  The operator K acts as 

d ~(gt0)  t=o [K~g](0) = - i  N + H(0) ~ (3.3) 

In the case of a periodic force: ~ / =  S 1 is the unit circle, gtO = O+ oot, 
d~t = dO, and K = - i (~  ~/~0 + H(O). 

Here we will discuss the case of quasiperiodic forces with two incom- 
mensurate frequencies: e)~/o) 2 -c~ r Q. The manifold J/g is a torus S i x  S 1, 
the flow g,(O~, 02)= (091t+01, c02t + 02), d # = d 0 1  dO2, and 

K =  -i091 - -  - i~2 ~ + H(O~, 02) (3.4) 
~30~ 6o 2 

We denote the two periods by Tj = 2~z/~j. The relation (3.2) provides a link 
between the spectral properties of K and the stability of the dynamics of the 
system. As discussed in refs. 20, 21, and 24, point spectrum implies almost- 
periodic evolution, while continuous spectrum signals an instability with a 
more complicated behavior and decaying correlations. 

It is useful to introduce a generalized Floquet operator (21) whose 
spectral properties are equivalent to those of the quasienergy operator. It 
acts on ~ -  ~(~L2(S  1, dO~) and is defined by 

Uv=3-1r2Ul(O~)  (3.5) 

where u1(01) -= U(T2, 0; 01,0) ( = monodromy operator) and [~-1 ~ff] (01) = 
~b(01--~1T2). The following result was shown in ref. 21. 

Lemma 3.1. (i) If ~ ~ ~ff~ is an eigenfunction of 

Uv qJ = e - i;3"2fb (3.6) 
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then the function ~ defined by 

@(01, 02) = ei~~176 -- 02/(D2 ; 01, 02) ~(01 -- 02601/(2)2) (3.7) 

belongs to J l  and is an eigenfunction of the QEO, with eigenvalue 2: 

/(~0 = ,~, (3.8) 

(ii) Conversely, if ~ ~ ~( is an eigenfunction of the QEO, then there 
is a function ~b s ~ such that ~ can be represented by (3.7), and ~b is an 
eigenfunction of the generalized Floquet operator. 

Remark. The eigenvalue equation for the Floquet operator (3.6) can 
be written as 

b/l(01) ~(01) = e --i2T20(01 -~ 2rcc 0 (3.9) 

which has the form of a cohomology equation. 
Before we discuss some examples, we give some general propemes of 

the eigenfunctions of the Floquet operator, which are mostly a consequence 
of the ergodicity of the dynamical system on the torus J / .  

Lemma 3.2. 
the Floquet operator UF, i.e., 

u~(O~) ~bk(O1)= Ak~bk(O ~ + 27rc~) (3.10) 

then the absolute value of the oVf-scalar product 

Gj)(o ,  ) 20~J)*(oi) I (~(Oi) 'q i2(OJ))~l-= j , 

is constant for almost all 0~ ~ S I. 

ProoL Since UF is unitary, IA~t=l .  The function defined by 
g(01)--I(~l(0X),q~2(01))wr is in Ll (S l ,  d01) and is invariant under the 
map 0 1 ~ 0 1  + 2 ~  on Sl: 

g(O i + 2rte)= I (~b~(01 + 2rta), ~2(01 -1-" 2rccO).  I 

= ( ~ 1  /-/1(01 ) ~1 (0i), Z L/1 (01) 

1 
-IA~I IA2~ g(01)= g(O~) (3.11) 

Therefore, since the map is ergodic, g is constant for a.a. 01. (zS) 

If ~ l, fb2 e X1 =- C N | L 2(S ~, dO ~ ) are eigenfunctions of 
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Corollary 3.3. The eigenfunctions of UF have .~-norm It~(01)ll~ 
that is constant for almost all 01 e S z. 

Corollary 3.4. For the case ~ = C N with N =  1, 2, if Uv has one 
eigenfunction, then the whole spectrum is pure point. 

Proof. (i) N =  1: If ~b is an eigenfunction with eigenvalue A, then 
Om=eim01~, mET/, are also eigenfunctions with eigenvalue Ae -im2~. We 
will show that the {~bm} form a complete basis of ~1 = L2( $1, d01) :  The set 
{e im01} is a basis and, by Corollary 3.3, ~b can be chosen such that 
[~b(0~)[ = 1 for all 0~, and thus 1/~b is well defined. Therefore any function 

f ~ ~ can be expanded as 

f(Oj) = ~ amOm(01) (3.12) 
m 

where am is the Fourier coefficient off/~b: 

1 f(01) _imO1 (3.13) am= ~ fsl d01~-~l) e 

(ii) N = 2 :  We generalize the preceding argument as follows: First 
remark that if ~bl = (y(01), z(01)) is an eigenfunetion with eigenvalue A, 
then we get a second one with eigenvalue A* of the form 
~b2=(-z(0~),  y(01)). This can be verified by direct insertion into the 
eigenvalue equation. According to Corollary 3.3, the ~ff-norm of the 
eigenfunctions is constant almost everywhere; therefore we can choose y 
and z such that ]y(0~)12 + [z(01)[2 = 1 for all 01. We will prove that the set 
{~)1 s 02einOl}ne 2~ is a basis of ~ff~, i.e., that any function 
(1~(01), v(01))�9 ~ can be represented as a linear combination 

( [ J ( 0 1 ) ~  : v(O1)j E anOlem~176 a,,,b,,eC (3.14) 
?z~  Z 

We construct a 2 x 2 matrix R that has the eigenfunctions ~bl and ~b2 in the 
columns, and R t is its conjugate 

(yz z,) ('* 7) R = R* = (3.15) 
y* ' --z 

Viewed as operators in ~ ,  they satisfy R R t = I  =RtR.  Equation (3.14) 
can be equivalently written as 

v(01)) ,~z b, 
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If we define an, bn as 

( a , ]  = 1  i, OiRt(O, 1 (3.17) f dO'l e ) 
b,} 2ZOos1 \v(O])} 

we verify by insertion that (3.16) is identically satisfied: 

(/[2(01 )~ = L  Y(01)J 27~n~ z fS ldOtlein(Ol-O],N(O1)i~'(O'l)(]~(Otl)'~\Y(Otl)j 
(12(0'1) ~ (fl(O1)~ (3.18) = ;Js, do; 601  - o',) R(O,) R*(O'I) \v(O'l)J = \v(ol)) 

Remark. This argument is readily generalized to the case Yf = C u. 
The key point is that in (3.18) we need R(01)Rt(01) to be equal to the 
identity in ~ for almost all 01. This can be achieved by means of 
Lemma 3.2 by constructing R with N eigenvectors ~bj that are mutually 
orthogonal in aft for almost all 01. Also, if one knows N -  1 such ~bj, an 
Nth one can be constructed by orthogonalization. 

This gives us an insight about the composition of the set of 
eigenfunctions of UF. For ~ =  C u the set of eigenfunctions has the 
structure {ei~~ n ~ Z, j =  1 ..... N, where ~bj are N functions that are 
mutually orthogonal in ~ for almost all 01 (and therefore form a basis 
of J f  for a.a. 01). The corresponding eigenvalues are of the form 
exp[ - i (2 jT2  + n12z7)], and thus they form a dense set. 

Remark. In the case ~ = C 2, if we consider Hamiltonians with zero 
trace (see beginning of Section 5) the propagator at any fixed time is an 
element of the group SU(2). If we define u~(0~)= U(kT2, 0; 0l, 0), k e Z ,  
we get a family of maps from the circle to SU(2) that is a cocycle, i.e., it 
satisfies the following condition(26'27): 

uk(O1)=ul(Ol + ( k - 1 )  27r~)...ul(Ol + 27zcQ u1(01) (3.19) 

i.e., if Ul(01) is given for all 01 ~ S 1, the propagator U(t, 0; 01, 0) is deter- 
mined for all times that are integer multiples of T2. The relation (3.19) 
follows immediately from the identity 

U(t+a,s+a;Ol,O2)=U(t,s;O1+cola, O2+cOza) (3.20) 

Two cocycles u~(Ol), u'k(01) are called cohomologous to each other if there 
is a map R: S 1 ~ SU(2) such that 

R 1(01 + 2~a) uk(01) R(01) = u~(01) (3.21) 
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From the proof of Corollary 3.4 it follows that the statement that the 
Floquet operator has pure point spectrum is equivalent to the statement 
that the cocycle uk(01) is cohomologous to a constant cocycle (i.e., one that 
does not depend on 01 and thus can be trivially diagonalized). To see this, 
we define the diagonal matrix D=diag(A,A*). Taking R as defined in 
(3.15), the eigenvalue equation for the Floquet operator can be written as 

Uk(O1) R(01) = R(O 1 "-t- 2rc~) D (3.22) 

which is identical to the cohomology equation (3.21), where u'k(01)= D is 
a constant cocycle. 

4. SCALAR EXAMPLES W I T H  C O N T I N U O U S  S P E C T R U M  

The special case 

H=h3(t) a3=h3(t)( ~ _01) (4.1) 

can be reduced to the solution of a scalar problem. We will show that 
already in this simplest case it is possible to have continuous quasienergy 
spectrum. In the scalar case the Hamiltonian is a function 

H= f(cn 1 t + 01, co2t + 02) (4.2) 

that acts multiplicatively on ~ f = C .  The propagator can be written 
explicitly as 

Efs ] U(t,s;O)=exp - i  dt'f(o~lt'+Ol, co2t'+02) (4.3) 

The question of stability reduces thus to the question of whether the 
integral of a quasiperiodic function is almost-periodic. (28'29) The Floquet 
operator is 

UF = J-  1_ r2 exp[ -- iv(O~ )] (4.4) 

wifh 

f0 T2 I ) ( 0 1 )  = - -  dt' f(o)l t' + 01, (-o2t') (4.5) 

Remark. A similar problem was treated in ref. 24 in a somewhat dif- 
ferent context, involving periodically kicked scalar Hamiltonians. Many of 
those results can be readily translated into the present quasiperiodic case. 

We first formulate a sufficient condition for point spectrum: 
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Theorem 4.1. 
7 > 0 and a > 1 such that for all n ~ ~ 2  (n i 5& 0)  

? 
Ic~nl +n21 > -  

and i f f  has a Fourier representation 

such that 

281 

If ~ =co~/~o 2 satisfies a diophantine condition with 

(4.6) 

[7(n)l 1/'/11 ~ < ~  (4.8) 
n ~ Z  2 

then the spectrum of the Floquet operator is pure point. 

Remark. The complement of the set of c:s satisfying (4.6) has zero 
measure. The conditions for this lemma could be substituted by the single 
condition 

Z IjT(n)l/ln" ~l < ~ 
n ~ Z  2 

Proof. Corollary 3.3 means in the scalar case that the eigenfunctions 
of Uv have constant absolute value. We can therefore represent them as 

~b(01 ) = e '~~176 (4.9) 

The eigenvalue equation can then be expressed as 

1.)(01)'~(t9(01)=#-~(p(01 +27r~) (mod27r) (4.10) 

with # = - 2 T  2. The condition that ~b~L2(S 1, dO1) is equivalent to the 
requirement that ~0 is a measurable function. We will try to find eigen- 
functions representing them by Fourier series: 

~o(0,)= Z (~ einl~ [ ( 0 1 ) :  ~ g(nl)e i"~~ (4.11) 
niE?7 nl~TY 

Inserting into (4.10) with rood 2~ omitted, we get 

g(nl) + ~ ( n l ) = / ~ +  ~(n,)  e 2~fn: (4.12) 

The equation for nl = 0  determines the eigenvalue: /~=~(0). We set 
qS(0) = 0, which is only a trivial phase. The other n~ yield 

~7(ni) 
~(r/1)  --  e z~i"~ - 1' nl :~ 0 (4.13) 

f ( 0 i ,  02)= ~ jT(n) e i " ~  (4.7) 
n ~ Z  2 
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To show the convergence of the Fourier series, we first write 

V(01) = E L e"'~ f:~ dt' e'""" = 2  Y,F. e"~~ 
n II 

and therefore 

Since tF.[ ~ IT2I, we have 

(4.14) 

Therefore 

I~(nl)l ~ Irzl ~ ILl (4.16) 
n2  

Using the inequality Isin ~l/> t0l 2/~ for 0 e I -re/2,  rc/2], the denominator 
in (4.13) can be estimated by 

le 2~i~'- 11/> Isin(2~enl)l 

~2(c~2nl)modl if (c~2nl)modle [0, 1/2] (4.17) 
~>~2l(e2nl)modl--ll  if (c~2nl)modlE[l/2,1] 

which combined with the Diophantine condition (4.6) gives 

i~(rtl)] < e l  In1[ ~ ~ ILL (4.18) 
n2  

E I(P(nl)l <Cl ~ ILl Inll 'r< oo (4.19) 
n I n 

and thus the Fourier series converges. 

Remarks. 1. It is clear from (4.13) and (4.15) that if f (0)  is a 
trigonometric polynomial, the spectrum is pure point for any irrational ~. 

2. From (4.13) and 

le 2~i~n1- 1[ ~ 2g(~nl)mod l 

we can deduce an inequality in the opposite direction: 

I~(nl)l 
10(nl)[ > (4.20) 

2~(cm 1)moa 1 

By chasing an e that is well approximable by rationals (i.e., such that the 
terms in its continuous fraction representation grow fast enough), there 

~5(n~) = ~ j~,F. (4.15) 
n2  
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always is an infinite subsequence of/71 such that for v arbitrarily smooth 
but not a trigonometric polynomial 

(~nl)mod i < - -  (4.21) 
2re 

Then the Fourier series is not convergent. We cannot, however, conclude 
that in that case there are no eigenfunctions, since the only requirement for 
q)(01) is that it is a measurable function, which does not entail the existence 
of a Fourier representation. Furthermore, Eq. (4.10) needs to be satisfied 
only modulo 2z, which again opens the possibility of solutions that do not 
have a Fourier representation. Therefore to prove that the spectrum is 
continuous one needs other methods. 

The following result was proven in ref. 24. 

T h e o r e m  4.2. If there are 7+,7  such that 

lim sup IO(nl)l l/l'~J = e  -y+ >0 ,  lim inf Ig(nl)l I/r'll = e  -y- > 0  (4.22) 
! n i l  ~ oo  I n l l  ~ oo  

with 7 + ~< 7 - < 27 +, and 

1 
lira sup In Isin(rcc~nl)J- 1 > 87_ (4.23) 

I n l l  ~ o v  

then the Floquet operator has purely continuous spectrum. Furthermore, if 

2~ dr(01) 
fo dO1 < 1 (4.24) dOl 

then there is no absolutely continuous spectrum. Thus, when the two sets 
of conditions are satisfied the spectrum is purely singular continuous. 

Here we will prove a similar statement, but under different conditions: 

and 

Theorem 4.3. If 
f(O) ~ CI(T 2) (4.25) 

!~(n)l 
lim = oo (4.26) 

I.J ~ ~ I n "  ~ol 

for some subsequence n = nk, k e N, and there is an eo > 0 such that for 
every n- -nk  from this subsequence either 

If(n)[ ~>(1 +eo) ~ Jf(/n)] (4.27a) 
l = 2  
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o r  

lY(.)I ~ to ~ / I f ( ln) l  (4.27b) 
t = 2  

then the Floquet operator has purely continuous spectrum. 
The proof is given in the Appendix. 

Remark. In Theorems 4.2 and 4.3 one finds continuous spectrum for 
smooth (or analytic) Hamiltonians under some Liouville-type condition for 
~. If one allows for Hamiltonians that are not continuous, it is easy to find 
examples that have continuous spectrum. For instance, if v(0~) = (01)mod 2,, 
the spectrum is absolutely continuous. (24) The following example was 
formulated by Kesten. (3~ 

Theorem 4.4. Define 

1, O<.01<.a (4.28) 
v(01) = O, a < 0 1 < 2 ~  

and continued periodically. If a/(2~) is rational, then the spectrum of Uv 
is purely continuous for all irrational e. 

5. CONTINUOUS SPECTRUM IN TWO-LEVEL SYSTEMS 

The general Hamiltonian acting on Jg = C 2 is of the form 

3 

H=ho(t)~+ ~ hj(t)o/ (5.1) 
j = l  

where oj are the Pauli matrices, and hilt) are real quasiperiodic functions, 
i.e., ks(t ) = hs(cot t + 01, e)2t + 02), where/~j(0l, 02) are continuous and 2~- 
periodic in the two arguments 01, 02 e S 1. Without loss of generality we can 
take h0 = 0, since its effect is only a global time-dependent phase that can 
be studied with the methods of the previous section. The Hamiltonian is 
then a Hermitian 2 x 2 matrix with trace zero, and thus the propagator 
U(t, s; O) is unitary with determinant one [i.e., ~ SU(2)]. 

In this section we will discuss an example proposed by Rychlik (27) 
that has continuous spectrum for any frequency ratio a. We start with 
some general remarks. The Floquet operator is Uv=Y-_r2ul with the 
monodromy operator ul=U(T2,0;OI,O)eSU(2), i.e., it can be repre- 
sented in general as 

u1(01)= b a* ; la12+tb12=l (5.2) 
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Lemma 5.1. For any choice of CLfunctions a, b from S ~ to C, 
l =  0, 1,..., ~ ,  with lal 2 + [bl 2 = 1 there is some quasiperiodic H of the form 
(5.1) such that (5.2) is the corresponding monodromy operator. In fact, 
there is large family of them, and they can be chosen to be as smooth as 
a and b. 

ProoL We first remark that if the propagator U(t, 0; 01, 0) is given 
for all 0 1 e S  1 and all t e l 0 ,  T2], then it is completely determined for 
all t: According to (3.19), if ul(O~) is given for all O~eS 1, then 
U(kT2, 0; 01, 0) -= uk(01) is determined for all times that are integer multi- 
ples of T2. We can decompose t = k T 2 + 6 t ,  ke7/ ,  16tl < I"2. Then 

U(t, 0; 01,0) = U(kT 2 + fit, 0; 01,0) 

= U(kT2+f t ,  kT2; 01, O) U(kT 2, 0; 01 , 0) 

= U((St, 0; 01 +colkT2, O) uk(01) (5.3) 

For the construction of the quasiperiodic Hamiltonian we first construct a 
propagator for t e  [0, T2] and then extend it to t >  T2 using (5.3). In order 
to obtain a smooth Hamiltonian we have to make sure that the different 
pieces match properly at t = kT2. 

The set {u1(01), 01 e S I } e SU(2) is topologically a circle, since it is the 
image of S 1 by a continuous map. We can construct a function v(t; 01), 
t e [0, T2], that interpolates smoothly between the identity I at t = 0 and 
ui(01) at t =  T2, such that for any fixed t, v(t;O1)eSU(2). This is always 
possible because SU(2) is simply connected and thus any circle u1(01) can 
be continuously deformed into a point (1). With this v we define for 
t = k T z  + 6t 

U(t, 0; 0 1 , 0 ) =  v(6t; 01 + COlkT2)/a/k(01) (5.4) 

Then we construct a first Hamiltonian h(t) by 

h(t) = i-~ g(t, O; 01, O) (U(t, O; 01, 0)) -1 

=- V(6t; 01 + COlkT2) (5.5) 

We require that the derivatives of v(t; 01 with respect to t are zero at t = 0 
and at t = T2, which guarantees that h(t) is smooth at the points t = kT2. 

822/68/1-2-19 
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We proceed as follows in order to verify that h(t) is quasiperiodic and 
to construct from it a more general Hamiltonian depending on two 
parameters 01, 02: Taking into account that 

1 1 
cSt = (t)mod r2 = - -  (0)2 t)mod2~z, k T  2 = t - - -  (0)2 t)mod27z (5.6) 0)2 0)2 

and that the function V is 2re-periodic in the second argument, we can write 

~-22 (0)2 t)rnoci2g ; 01"k-0) l t - - - - (0 )2 t )mocl2~  0)2 mod2~ 

V(  1 0)1 (0)2 t)mod2n) (5.7) ~22 (0)2 t)rn~ ; (01 + 0)1 t)mod2rr - -  0)-2 

Defining the 2re-periodic function in two arguments 

A(0,,  0z)= V(~-~ (t92)mod2n; (01)m~ (02)m~ (5.8) 

we can define a quasiperiodic Hamiltonian 

H =  A(0)~ t + 01, 0)2t + 02) (5.9) 

that by construction has ut as monodromy matrix. 

Remark .  The preceding construction cannot be done in the scalar 
case because there instead of SU(2) we have U(1), which is not simply 
connected. 

We consider the following example~27): 

Proposition 5.2. Let 

(e;~ e0~ (5.10) 

The corresponding Floquet operator U v = Y - l _ r 2 u l  has absolutely con- 
tinuous spectrum for any irrational e. More specifically, it is a Lebesgue 
spectrum.(25) 

Proof.  First we remark that there are no eigenvalues: Since the 
matrix ut is diagonal, we can write any candidate for eigenvector of Uv 
as (y(01), 0) or (0, z(01)). For the first type, the eigenvalue equation is 
equivalent to 

ei~ = e i"y(O 1 + 2~c~) (5.11) 
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If there were an eigenfunction y ~L2(S 1, dO~), it would necessarily have a 
converging Fourier series, with coefficients f t , .  Insertion into (5.11) yields 

Y,+ I = e-i~'e-i~n.Yn (5.12) 

which implies ]y,+~] = lYe] and therefore the Fourier series would not be 
convergent. As a consequence there are no eigenvalues. 

Further, we consider the following basis of ~ = C 2 @ L 2 ( S  1, dO1): 

(5.13) 

where flk = 2rcc~k(k + 1)/2. Then Uvek = ek+ 1 and Uvdk = dk+ 1. Therefore, 

, _f2 aol . .  

(ek, U~ek)= (ek, ek+j)  = 6 j O - J o  2n e-~J~ 

= (dk, U}dk) (5.14) 

i.e., the spectral measure associated the basis vectors is equal to the 
Lebesgue measure. 

Remarks. 1. We say that the continuous spectrum of this example 
has a topological origin because of the following property: Corollary 3.3 
implies that y(O~) and z(01) have constant absolute value for almost all 01, 
and therefore we can write, e.g., y(O~)= exp(i~p(0~)). The index of a func- 
tion from S ~ to S 1 is defined as the number of times that the image wraps 
around the circle when 01 goes from 0 to 2n. In Eq. (5.11) the index of the 
left-hand side is larger by one than of the right-hand side, and therefore the 
equation cannot have a solution. 

2. By the same mechanism, any monodromy operator of the form 

0 ) 
e_iLO, , O r  (5.15) 

leads to a Floquet operator with Lebesgue spectrum. By taking linear com- 
binations and a suitable limit, we conclude that a monodromy operator of 
the form 

0 
Ul(O1)=(f(8~O L~ f,(eiLOl)), 

where f is an analytic function, leads to a 
absolutely continuous spectrum. 

L g : 0 e Z  (5.16) 

Floquet operator with an 
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By Lemma 5.1 there is a smooth quasiperiodic Hamiltonian that has 
(5.10) as its monodromy operator. We will construct one example explicitly 
by the following procedure: 

In order to construct the homotopy linking the identity with u1(01), 
we notice that (5.2) implies that SU(2) is isomorphic to the three-sphere 
83. Embedded in N4 it can be parametrized by {x E ~4; ~2i=1,4 [xi[ 2~-- 1}, 
or by three angles 

xl = sin ( sin ~0 sin 0, 

x 2 = sin ~ cos q~ sin ~9, 

x3 = sin ~ cos 0 
(5.17) 

X 4 ~ COS 

We identify the real and imaginary parts of a and b with 

~J~a = x1, ~a= x2, ~J~b= )c4, ~b= x 3 (5.18) 

With this parametrization the identity of SU(2) corresponds to (1, 0, 0, 0), 
i.e., (~=rt/2,~0=0, 0 = z / 2 ) ,  and u1(01) to (cos01, sin 0x, 0, 0), i.e., 
(~ = ~/2, q~ = 01, 0 = ~/2). 

The homotopy is given by a set o f  smooth functions xi(t), i= 1 ..... 4, 
t e [-0, 7"2]. We will choose the special subset of homotopies in which 
x4(t ) = 0 is kept constant. This allows us to work with the two-sphere S 2 
embedded in ~3. The identity is the point on the Xl axis with Xl = 1, and 
UF is the circle of the equator on the xl ,  x2 plane. We deform this circle 
into the point of the identity by a combination of two transformations 

( Xl( t )~  /COS 01 x~ 

x2(t)~ = R2(t) T3(t) tSio0,) 
\x3(t)/ 

(5.19) 

The first one pulls the circle along the x3 axis: 

/ cos  01~ [sinf(t)cos01~ 
= ~ sin 6(t) sin 01 / (5.20) T3(t) l si;01 fl 

\ cos6(0 / 

where 6(t) is a monotonically increasing function with 6 (0 )=0  and 
6(T2) = ~/2. The second transformation is a rotation around the x2 axis 

(cos[rc/2--6(t)] 0 sin[Tt/2s I 
R2(t) = 0 1 

-- sin [Tr/2 -- 6(t)] 0 cos[Tr/2-- 6 ( t ) ] /  

(5.21) 
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Combining them, we obtain 

x l ( ' ) \  / c o s 2 6 ( t ) + s i n 2 6 ( t ) c o s 0 1 \  

x 2 ( t ) / =  ~ sin6(t) sin01 I (5.22) 

x3(t)) \ s in  6(t) cos 6(t)(1 - cos 01)) 

This homotopy is illustrated in Fig. 2. 
Applying (5.18) and (5.7), we write a(t; 01)=x  I +ix2, 

and the Hamiltonian as 

h(t)=( c(t, 01) g(t, ol) 
\g*(t,  01) --c(t, O1)) 

with 

b(t; 01 ) = ix3, 

Fig. 2. Interpolation between the identity and u~(O~). 

( , da db*~ 
c(t, O1)= i ~a -~ + b--~-)6R,  

g(t, 01) = i ( - b *  da db*'~ )-~ + a --~-) s C (5.24) 

Inserting (5.22), one obtains 

d6 
c(t, 01) = E - c o s  6(1 + sin 2 6) sin 01 + cos 6 sin 2 6 cos 01 sin 01] d t  

g(t, 01)= {sin 3 6 sin 01 (1 - c o s  01) (5.25) 

d6 
+ i[cos 2 6 sin 2 01 - c o s  01 (1 - c o s  01)]} )-~ 
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This expression shows that if we choose 6(t) in C ~ and such that its 
derivatives up to order k are zero at t - - 0  and at t - - T  2 we obtain a 
quasiperiodic Hamiltonian that is C k 1, The simplest example is 

6( t ) = ~( t/ T2) 2 (3/2 - t/ T2) (5.26) 

which leads to a continuous Hamiltonian. 

Remark. We do not know if it is possible to obtain continuous 
spectrum for any irrational e in the case of analytic Hamiltonians. 

6. STABIL ITY OF THE POINT  S P E C T R U M  

As a consequence of the results of Section 2, when the spectrum of the 
quasienergy operator is pure point it has the structure 

,~n,m=~m+nlO)l-l-n20)2, m=l , . . . ,N ,  nf f~  2 (6.1) 

i.e., it is a dense subset of R. Therefore one cannot apply the usual pertur- 
bation theory, (31) since already in the first-order terms there appear sums 
whose convergence is not clear due to the presence of small denominators. 
Under suitable Diophantine conditions on the frequencies one can control 
the convergence of the perturbation series by using a KAM-type  technique 
introduced by Bellissard/24) 

Theorem 6.1. Let 

8 8 
K =  - ie) l - f f~- ico2-~2+Ho+eV(O~,Oz)-Ko+eV(O~,O2)  (6.2) 

where Ha and V(01, 02) are Hermitian 2 x 2 matrices, H o being constant 
and V(OI, 02) such that each component  is an analytic function in the strip 
{0 l lm 0j < ro}. Assume, e.g., that c~ = c%/co 1 > 1, and that (2/~/co 1)mod~ > 0, 
where 2/~ > 0 is the difference between the two eigenvalues of H o. Then, for 
any given ~/> 0 and fixed ~ol there is a set of ~'s S. c (1, oo ) of Lebesgue 
measure [S,[ < t / and  a value ec(t/) such that if ~ e (1, oo) \S,  and e < ec, the 
spectrum of K is pure point. 

Proof. The proof  follows the scheme that was set up by Bellissard for 
a similar theorem on the smoothly kicked rotator  (24) and on the ac Stark 
effect, (32) combined with some improvements introduced by Combescure (33) 
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in her treatment of perturbations of the harmonic oscillator. Without loss 
of generality we set 

H o = f l (  ~ _ ~ )  (6.3) 

For the proof we construct a unitary transformation R(~, s) such that 

R K R - I = K ( ~  g+(~'e)O g (&0)e) (6.4) 

where g_+ are independent of 0 -  (01, 02) .  Stated equivalently, K is trans- 
formed to an operator that is diagonal in the basis of eigenfunctions of the 
unperturbed K (~ which are of the form 

~/irl, rn = n = (nl ,  r/2)~ Z2; m e { + l ,  - 1 }  
( d " ~  i f m = - I  

(6.5) 

corresponding to eigenvalues ~ ,  n__+fi, where co= (con, o)2). The transfor- 
mation R is constructed by iteration R . . . .  Rk...R2R1; at each step the 
order of the 0-dependent perturbation is reduced from order # to order e 2j. 

Remark. The comparison of orders of e is used only in informal 
arguments, in order to guess the form of the transformation. Once this 
form is fixed, the proof proceeds by estimates for finite e, and one does not 
need to worry about the classification of terms in orders of e. 

The kth iteration step is defined as follows: We start with an operator 
of the form 

Kk = Dk + Vk ; D~ - K (~ + gk (6.6) 

where g~ and D k are diagonal in the basis {[/ /n,m} and Vk is Hermitian. 
gk has been generated in the previous iterations and can depend explicitly 
on c~, but it has no dependence on 0. We represent the transformation 
as R k + 1 = e w~+~, with W2+ 1 = - Wk + 1. Expanding the exponentials and 
regrouping the terms that we expect to be of the same order as Vk (i.e., 
making the hypothesis that will be justified a posteriori that Wk + ~ is of the 
same order as Vk), we obtain 
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Kk + 1 ~ eWk+lKk e -  Wk+l 

1 
= Kk-[- [-Wk+l, Kk" ] "~--~. [Wk.l, [mk.l ,  Xk]]  

1 
+~., EWe+,, EWe+l, Ewe+l, G ] ] ]  + "- 

= D k +  Vk+ [Wk+I, Dk] + Vk+~ (6.7) 

where we have selected 

1 

1 1 

We will work with the matrix representation corresponding to the basis 
{On,m}, using the notation 

Wk+ l(m, m', n - - i f )  = (~p . . . .  Wk+ltPn',m') (6.9) 

The matrix elements depend only on the difference n -  n' because of the 
special form (6.5) of the eigenfunctions tPn,m. For the diagonal operators D 
we use the simplified notation 

D(m, n)= ( ~  . . . .  D~n.m) (6.10) 

and 

gk(m) = ( ~  . . . .  gk~n,m) (6.11) 

which is independent of n since gk has no dependence on 0. 
Motivated by the decomposition (6.7), we proceed as follows: 

1. Determine Wg +1 and a diagonal 6g such that 

eWk+lKk e -  wk+~ = Dk + 6g + V~ + 1 (6.12) 

This will be satisfied if W~+ 1 and 6g satisfy the equation 

[ Wk+ 1, Dk] + Vk = 6g (6.13) 

which one can solve explicitly: The. diagonal terms of (6.13) yield 

6g(rn) = Vk(m, m, 0) (6.14) 
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and one can choose Wk+ l(m, m, 0 ) =  0. The off-diagonal terms yield 

Vk(m,m' ,n)  
W k + l ( m , m ' , n - - n ' ) -  

Dk(m , n)--Ok(m' ,  n') 
(6.15) 

The denominator 

D k ( m , n ) - - D k ( m ' , n ' ) = t ~ . ( n - - n ' ) + ( m - - m ' ) f l + g k ( m ) - - g k ( m '  ) (6.16) 

can be zero or arbitrarily close to zero for infinitely many indices m, m', 
n - n ' .  To guarantee the convergence of the series (6.15) and to obtain 
suitable estimates, we fix col and restrict the values of ~ to the ones 
belonging to the set characterized by the following Diophantine condition: 

g2k + ~(Yk+ 1) = {~ 6 "Ok(7k); such that Yn ~ Z 2, and m, m' ~ { + 1, - 1 }, 

Yk+l ) 
I o ~ . n + ( m - - m ' ) f l + g k ( m ) - - g k ( m ' ) l > / ( l + l n l  ) 7 - ' ' ) ~  (6.17) 

where n and m - m '  are not simultaneously zero, g2o=(1, oQ), a > 2  is 
fixed, and Yk+l is a constant that we will choose for each step. As we will 
show, the Lebesgue measure s of the complement of this set is small. Since 
the gk in the denominator depend on ~, in order to get estimates of 
Diophantine type, we need to keep control on the size of gk as well as 
on its variation as a function of ~. With this motivation, we define the 
following norm on operators A that depend parametrically on ~Ef2, (33) 

IIAll,,a= ~ e rlnl sup s u p ( l A ( m , m + A m ,  n;~)l 
n,~m ~ ,~ ' e  ~ m \ 

I A ( m , m + A m ,  n ;~) -A(rn ,  m + A m ,  n;~')[) (6.18) 

I~-~'1 

We remark that the use of a finite difference in (6.18) instead of a derivative 
with respect to ~ is necessary, since, as the iteration proceeds, gk is only 
defined on subsets of N that have many gaps. 

We will use the shorter notation I1 If~ = It" ll,k, a~- 

Lemma 6.1. We denote ( - i n f j~ z12 f l / oo l - j l  , i.e., the distance 
from 2fl/c~ 1 to the closest integer. For  ~r > 2, if 

1 H gkllk < ~C01 ~ (6.19) 
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then the Lebesgue measure  of (2k\s k +1 is bounded  by 

~ ( (2k \ f2k  + 1) < C1(Cr) Yk+ 1 (6.21) 

where c~(a) is a constant .  

2. Deno t ing  s k =  IIVkllk, we obta in  the following est imates for the 
solution of Eq. (6.13): 

Lemma 6.2. F o r O < r k + l < r k a n d T k < l ,  

II Wk+ lllk+l <<.Akel, 

with 

and 

3. We 

(6.22) 

Co(a)  
Ak= (~)k+ 1)2 (pk+ 1)2o-+ 1, Pk+l - - r k - - r k + l  (6.23) 

II 6gl, + 1 II k + 1 < ek (6.24) 

need to show that  the compos i t ion  of t ransformat ions  
Sk =-- Rk.. .R2R1 
condit ion:  

L e m m a  6.3 .  If 

IIWkllk < a <  ~ (6.25) 
k= l  

then Sk converges to a uni tary  t ransformat ion:  lim k ~ ~ Sk = R. 

4. The  remainder  te rm of (6.12) is es t imated by the following result. 

L e m m a  6.4 .  We have 

ek + I <~ 2 [[ Wk + 111 k + I ek exp(2 II Wk + x ll k + 1) (6.26) 

Combin ing  the est imates (6.22) and (6.26), we obtain  the recursive 
inequali ty 

ek + 1 <~ Ak ~2 exp(Aksk) (6.27) 

converges. This will be the case under  the following 

12,11 
Yk + I < -~- ff (6.20) 
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. With the choices 

7k= 7~/2  k+J , 7~ < co~(/4; pk=poo/2 k+~ (6.28) 

where ff=infy~ z 1213/col-Jl, we can write 

2 v+ 1 Co(O" ) 
Ak=B2~k; where B =  �9 v = 2 a + 3  (6.29) 

The inequalities (6.27) imply then the following: 

Lemma 6.5.  If 8o < m i n { c o l ( ( 2 v - 1 ) / 2  v+2, 1/(B2~'e)}, then 
limk ~ ~ ek = 0. More  precisely, there is a positive # < 1 such that: 

(i) ~x ~< c42-v~/~2k, c4 = const 

(ii) rlwkl]k+l < c 5 #  2~, Cs----const 

(iii) Zk~_-o ek <o91(/4 

The statements (i) and (ii) guarantee that  the i teration converges. Proper ty  
(ii) implies that  ~ k  ]l W~-llk is finite, which is the condit ion needed in 
Lemma 6.3 for the convergence of the unitary transformations.  

Proper ty  (iii) implies that  g+ is finite [and  in part icular  at each step 
I I gk U k = ~2~, = 1 II 6gk, l[ k, < Z~, _ i ek, < co 1 ~/4, which is the condit ion (6.19) 
needed for the estimate in Lemma 6.1 of the measure of the sets s +~]. 

6. The choice of the constants Yk was made  such that  the total 
measure of the subset of ~'s that  we have to exclude can be estimated by 

k=O 

i.e., the q appearing in the s tatement  of the theorem is identified with 
~ = C l ( a ) 7 ~ .  

Proof of  Lommo 6.1. We start by considering the set defined for n 
or m -  m' different from zero as 

t . ( ( ) = { g e ~ ; l o . n + ( m - m ' ) f l + G ( m , m ' , ~ ) [ < ~ }  (6.31) 

where G(m, m', ~) =_ gk(m) -- gk(m'). We show that  if 

< co 1 (/2 (6.32) 

then 
4 

&o(i.(~)) ~<__ ~ (6.33) 
col 
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The condit ion (6.19) implies that  IG[ <�89 which together with (6.32) 
implies that  the set 1.(4) is empty unless n 2 r  In that case consider two 
~, ~' e I , ( 4 ) ,  i.e., both  satisfy 

[nl +~n2 + ( m - m ' )  fl/~l +G(m,m' ,~) /o) l l  <~ 4/o)l (6.34) 

Subtracting the two inequalities, we get 

la-c~'l 
G ( ~ ) - G ( ~ ' ) I  24 

/'12 + ~ ~ 1 1  <--(01 (6.35) 

The condit ion (6.19) implies 

IG(~)-G(c~')I col 
< - -  (6.36) 

I ~ -  cY[ 2 

and therefore 

4 
I~ - c~'j < - -  r (6.37) 

(-O 1 

which gives the bound  on the measure of I , (4)  that is independent  of n. 
With this result we proceed by summing over all indices of the set 

F(N) = {n 6 7/2; Inl = N} which contains 4N elements: 

16N 
Y', Y ' ( I , (4))  ~< r (6.38) 

nET'(N) 0)1 

We then choose 4 = Yk+ 1/(]nt + 1) ~ and obtain that  the measure of the set 

It{N) = {~ e f2 k ; ]w. n + (m -- m') fl + G(m, m', ~)l 

~< Yk + 1/(}n[ + 1 )~ for some n s F(N)}  (6.39) 

is bounded  by 

16N~:k + 1 (6.40) 
~( I r{N) )<  (In] + 1)~ < 16N1 ~7k+1 

and summing over N 

~ N 1 - r  (6.41) &P(f2k\~k + 1) = s = c l ( a )  7~+1 
N=I N=I 

where the last sum converges, since a > 2. 
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Proof of Lemmo 6.2. We will use the shortened notation d =  
co .n+(m-m') f l+G(m,m;(O,  V= Vk(n,m,m';~), and W= Wk+l(n,m,m';~); 
and d', V', W' and G' are the same quantities, but evaluated at c~'. 

To estimate the norm N Wk+ lH~+ 1 as defined by (6.15), we use (6.17): 
1/Idl < (Inl + 1)'~/7'k+,. 

We start with 

Igl< ( 1 +  Inl) ~ ( 1 +  Inl) 2~+' 
I WI--T~- I VI < I vI 2 (6.42) 

•k+l 7k+l 

where we have used lTk+l] < 1. Further, we decompose 

v _ v '  /1 1 \  1 
I W - W ' l - -  d d' -- v(Tt--d;)+-d ; ( v - V ' )  

~<lVl dd + ~ l V - V ' l  (6.43) 

For the first term we write 

d-dd,d' = ((~ - ~') n2 -dd,(G - G')/co~ 

( ~ - -  ~') n 2 - -  ( G - G ' ) / c o ,  

<  T+XI  + 1)-2o 

w~+, l a - m l +  co, i 

(Inl + 1) 2~+1 
< 7~+, 2 l a -  ~'l (6.44) 

For the last inequality we have used (6.36). Putting together (6.43) and 
(6.44), we obtain 

[ W - W ' I  (]nl + 1)2"+1 ( V']~ 
r < w~+, \ lVl+lW- (6.45) 

la- a'l ) 

which together with (6.42) and the fact that for 0 < p < r o, 2a + 1 > 0, 

(Inl + 1)2~ 1 ~< go(a) p-(Z~+ 1)epFnl (6.46) 

yields 

eo(o) e"l"~ ( IV--V'I] [ W ] + t W - W ' J <  lp2O+1 JVI+ (6.47) 
I~,-ml ~.+ I : -a ' l /  
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Inserting this into the definition of the norm, we obtain finally the estimate 
(6.22). 

The estimate (6.24) follows immediately from (6.14). 

Remark. In the next lemmas we will use the following properties of 
the norm (6.18): 

IIAIIr-p,~ ~ ]lAH,- ~a (0~<p<r)  

IIAII~,~+, ~ IIA II~,~a~ (K2k+ ~ ~ K2k) 

IIABIIr, Q <~ [IAl[r,~ IIBII,.,~ 

II[A, B]llr,,~ ~< 2 IIAIIP,~ Ilgll~,,~ 

(6.48) 

The third inequality is proven in ref. 33 (Lemma 2.3). The space of infinite 
matrices endowed with this norm is a Banach algebra. 

P r o o f  o f  L e m m a  6.3.  The condition (6.25) implies that II wkll~ < M, 
for some constant M. We will use the inequality 

lIRa- 1like: Lie ~ -  111~= w~.= ,  ~ ( w k )  j-~ 

[I Wkl[k elIW~ll~ ~ eM I[ Wkllk (6.49) 

We can write Sk = R k S k _  1 and estimate the difference 

I lSk--Sk-- l l lk:  ]l(Rk-- 1) Sk- l l l k<  ]l(Rk-- 1)Ilk ItSk ~llk 

~<e M I[ W~ll~ IISk-~ll~ (6.50) 

The last factor is bounded by 

k - - 1  k k - - I  

[[_ Rk, ~< [-I lIRa,- 1 + ltlk, I I & - ~ l l ~ =  ~ ~ ~,:~ 

~< YI (eMIIWk'llk'+l)~<exp ln(eMllWk'll~'+l) 
, =  k ' = l  k 1 

~<exp e M IIW~,llk, ~<exp{eMa} (6.51) 
k 1 

Since II Wk, IIk ~ II Wk, IL k' ~ 0 as k'  ~ 0% we obtain limk ~ ~ [I St, - Sk 111 k = O, 
and thus the sequence {Sk} converges to a unitary operator  R. 
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Proof of Lemma 6.4. 

and thus 

From (6.8) we can write 

2 2 

[1V~+~I [ ~<2 11Wk+ll[" 11Vk][ + 2-~.T Wk+ 1112" 

= 2  [Iw~+~ll-I[GII ~ 2 j IIW~+~!I 
j = 0  

v~i l  + . .  
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1 
(6.52) (j+ 1)! 

I I G + , l l k + l ~ 2  IIW~+lllk+, I lrx l lk+lexp(2 Wk+,ll~+~) 

2 rl W~+ lrlk+x I[ gkl[k exp(2 It Wk+ ,Ilk+ 1) 

Proof of Lemma 6.5. 
becomes 

(6.53) 

(i) Denoting xk = AkG, the inequality (6.27) 

v 2 ~r xk+ 1 <~ 2 x k e  (6.54) 

We proceed in two steps. First we show by induction that if a sequence 
{Xk} satisfies (6.54) and Xo < b for some b satisfying the condition 

2~be b < 1 (6.55) 

then x k < b  for all k: Assume x k < b ;  then xk+l<~2vxZeXk<<,2~b2eb<b. 
A possible choice of b that satisfies (6.55) is b = 1/(2re). 

In a second step we improve the estimate: the bound xk < b together 
with (6.54) implies that x~ satisfies 

x~+~<~cx 2 with c = 2 V e b > l  (6.56) 

which in turn implies xk<~c l(CXo) 2k. The condition for convergence is 
therefore CXo < 1, i.e., Xo < 1/c = 2 - r e  -b. But the condition (6.55) that we 
imposed in the first step implies that b < 2 - r e  -b. Therefore, the condition 
Xo < b = 1/(2re), which translates to 

eo < 1/(BZVe) (6.57) 

guarantees that there is a positive # < 1 such that 

8k < C 4 2  vk# 2k, C 4 = const (6.58) 

and also (ii): 

I IWkl l~<Akek<Cs#  ak , C5 = const (6.59) 
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(iii) We have to impose a further condition on b such that 
11 gellk--~ ~ = o  ek < 0)1 ~/4. As we have seen, the condition xk ~< b implies 
that ek ~< (b/B) 2 vk and therefore 

b 2 v 
ek ~< ~ 2v-----~ (6.60) 

k=0 

which is smaller than colff/4 if b < B ( 2 V - 1 ) / 2  v. This leads to 
e0 < 0)1 ~( 2 v -  1)/2 v +2. This completes the proof of Theorem 6. 

Remark. The proof of this theorem generalizes immediately to the 
case of N-level models. The theorem can be extended to the case in which 
the perturbation V(01, 02) is differentiable (C 4) but not analytic, by 
applying the methods developed in ref. 33. 

A P P E N D I X  

Proo f  o f  Theorem 4.3. We will show by contradiction that the con- 
ditions (4.25), (4.26), and (4.27a) [-or (4.27b)] imply that Eq. (4.10) has no 
solution. Consider some n = (n l ,  n2)~ 7/2 from the subsequence nk, which 
enters the conditions (4.26), (4.27a). To simplify notations, we denote 
m = n x  and n =  -n2 ,  s-o that n = ( m ,  - n ) .  Let 

e = m ~ - - n  
m 0 ) l - n 0 )  2 n - o  

0)2 0)2 

For the sake of definiteness we will assume that m, n > 0. Let us denote 

01 
t = ~ ,  g(t)  = -q~(27zt), ~(t) = - [ v ( 2 ~ t ) - # ]  (A.1) 

Then (4.10) becomes 

g(t  + ~) - g(t)  = fl(t) mod 2~ (A.2) 

where t is defined mod 1 and 

fO T2 f l ( t )=  f ( 0 ) l t '  + 2~t, 0)2t') dt' + # 

2re 

= (0)2) i fo f (~ t '  + 2~t, t') dt' + # (A.3) 
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We can include # into f ( t ,  t') by multiplying it by #/(2rw)2), and therefore 
we may assume that # = 0. Equation (A.2) implies that 

m - - 1  

g(t + e) - g(t) = ~ f lu + ke) rood 2u (A.4) 
k = 0  

Let us estimate the RHS of this equation. Let 

Then 

C =  sup I/3'(01 
0 ~ < t ~ l  

and we can write 

where 

Further, since 

f lu + k~) = f l t  + k + 5(t) (A.5) 
k = 0  k = 0  

iS(t)l <<. Cm le] (A.6) 

k = O  k = 0  

(it is just only a permutation of terms), we get from (A.4) and (A.5) that 

g ( t + e ) - g ( t ) =  fl t+  + 5(t) rood 27~ (A.7) 
k ~ 0  

We define a new function 

7(t)= (m2)- ' f z ' f  ( n t' + 2ut, t ' )  dt ' 
o km 

(A.S) 

Comparing with (A.3), its difference with fl is bounded by 

!7(t) - fl(t)l ~< C lfi-! 
m 

and we can rewrite (A.7) as 
m - - 1  

g(t + el - g(t) = 
k = O  

;~ ( t  + k )  + 5(t) mod 2~ (A.9) 

822/68/1-2-20 
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where 6(0 is a different function but it still satisfies estimate (A.6) (with a 
new constant C). 

Let us expand ~(t) in the Fourier series 

~/(t) = ~ ~(j) exp(Zn/jt) (A.10) 
j - -  - -00  

and substitute it into (A.9). Since 

~ exp 2~0" = 
k=o , j = I m  

where l e Z, we get that 

~ 7 t+ = m  "~(lm)exp(2~ilmt) (A.11) 
k = 0  l =  - -oo  

Let us compute ~(/m): 

~( lm ) = 7(0 exp( - 2~ilmt ) dt 

=(~o2) -1 f 2~Zt+mt' , t '  e xp ( -2~ i lmt )d td t '  

;/;/ [ (" )]  = ( 2 ~ o 2 ) - '  f ( t , t ' ) e x p  - i l m  t - m t '  dtdt '  

= TzjT(lm, - In) 

Substituting it into (A.9), (A.11), we get that 

g(t + e ) -  g(t) = Tzm ~ f( lm, - l n )  exp(2~ilmt) + 6(t) 
l =  - -o0  

= Io + ho(t) + 6(t) mod 2~ (A.12) 

with I o = T2ma~(0, 0) and 

ho(t) = T2m ~, ~(Im, - ln) exp(2~ilmt) 
lv~O 

Since Eq. (A.12) is defined mod 2~, we may change Io by 2~k and assume 
that - ~ < Io ~< ~. For the sake of definiteness we will assume that 

0~<Io~<~ (A.13) 
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The function f(tl, t2) is real; therefore, 

f ( - lm,  ln)= f*(/m, -ln) 

hence 

f(lm, --ln) exp(27rilmt) =2 ~ If(lm, --/n)l cos~2zclm(t-Azm)] 
lv~O 1= 1 

Let us denote 

q(t) = ~ [f(Im, -In)l cos[2~zlm(t- Alm)] 
/ = 1  

where Arm = - a rg ( f ( /m ,  -ln)). We do not note explicitly the dependence 
on n, since it is not relevant for the argument. By the conditions of the 
theorem, either (4.27a) or (4.27b) holds. Let us consider first the case when 
(4.27a) holds. It ensures that for the values t = A l m  

q(A,m) = If(m, - n ) l  + ~ [f(Im, -ln)t cos[21rlm(A1m-A,m)] 
/ = 2  

>/If(m, -n) l -  ~ If(lm, -ln)l >~eo If(m, -n)l 
l = 2  

Moreover, there exists a segment [-ao, bo] around the point t o = A m such 
that 

2 if(m, - n ) l / >  q(t)>1 2 If(m, - n ) i  

when t e [a0, bo], and 

ib ~ _ a~ ] ~> ~o 
rn 

(A.14) 

Ibj- ajl >/~o (A.15) 
m 

where ~o > 0 does not depend on m. One can construct similar segments 
[aj, bj] around each point t j=Alm-}- j /m , j = 0 , 1  ..... m - l ,  where 
cos[27zm(t--Alm)] is equal to 1. Thus, we have a set of nonintersecting 

rn 1 segments [aj, bj], j = 0 , 1  ..... m - l ,  such that for t e U j = o  [aj, bj] the 
estimate (A.14) is valid and 
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Returning to (A.12), we have that 

g(t + e) - g ( t )  = I o + ho(t) + 6(t) rood 2~z 

where ho(t)= 2T2mq(t) satisfies for t e  II m- 1 [aj, bj] the estimate t , J ]=  0 

Cm [jT(m, - n ) l  > ho(t) > C - l m  I)7(m, -n ) l  

with some C not depending on m. Since by (A.6) 

[6(t)l < Com In .ol  

then by the condition (4.26) a similar estimate holds, starting with some 
m = m0, also for h(t) = ho(t) + 6(t), i.e., 

g(t + e) - g ( t )  = Io + h(t) mod 2g (A.16) 

where for t e ~Jj'=01 [aj, bj], 

Cm [jT(m, -n) [  > h( t )> C - ' m  I)7(m, -n ) l  (A.17) 

with C not depending on m. For what follows it is useful to notice that the 
condition (4.25) implies that 

lim m f ( m , - n ) = 0  
m ~ o ~  

If the function g(t) were differentiable, we would get from (A.16) and 
(A.17) that 

Co In-ol > sup Ig'( t) l '  lal >C -lm I?( rrt, --n)l = C - l m  [jT(n)l 
O~t~<l 

which contradicts the condition (4.26). However, we can only assume that 
g(t) is measurable, so we will use more sophisticated considerations. 

Since Eq. (A.16) is mod 2~, we may assume that 

0 <~ g(t) < 2~ 

Let us represent g(t) as 

g(t) = go(t) + gl(t), 0 <~ go(t), gl(t) < 2~ 

where gl(t)  E C 1 and 

1 

fo Ig0(t)[ dt<c5 (A.18) 
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where 6 > 0  will be chosen later. Then there exist Co= Co(c~)>0 and 
mo = mo(6) such that 

Igl(t + e)-- gl(t)] < Cog < l C - l m  lyT(m, --n)l 

for m > mo(6 ), so again we have for go(t) that 

go(t + a) - go(t) = Io + h(t) mod 2~ (A.19) 

with some new h(t) which satisfies for m > mo(6) the estimate (A.17) as well 
with a new constant 2C instead of C. To simplify notations, we will denote 
this new constant again by C. For  what follows it is important that C does 
not depend on 6 and on the splitting of g(t) into go(t)+ gl(t). 

We use now the following idea. Consider on the segment [ao, bo] the 
sequence of points 

ck(a')=ao + e' + ( k -  1) ~, k = l ,  2 ..... K=IIb~176  I 

with some arbitrary e', 0 ~ a'~< e (the square brackets denote the integer 
part). We are interested in those k's for which 

7~ 
~< go(ck(e'))< ~- (A.20) 

Denote A(e') the set of such k's. Let IA(e')] be the number of elements in 
A(E'). We will show that 

IA(a')l > 7K (A.21) 

where 7 > 0  does not depend on m and e': Denote by AC(e')= 
{1, 2,..., K}\A(a ' )  the complement of A(a'). Then it follows from Eq. (A.19) 
and the estimate (A.17) that A(e') and AC(e ') consist of alternating intervals 
of subsequent integers such that the length of every interval of k e A(a') is 
not less than 

7r(4 -- ~/4 - 3~ 

and the length of every interval of keAC(e ') is not larger than 

l~= -2(io+C_~m If(m, - n ) ] )  + 1 
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Hence 

]A(d)h >~ loL 
where L > 1 is the number of intervals in A(d)  and 

IAC(e')[ ~ / I ( L +  1) 

so 

Blekher  

By (A.15) it implies that 

f •  lgo(t)l dt ~ 7~ 
m 

where 7o > 0 does not depend on m. Hence 

1 rn 1 

o [go(t)l dt >~ 
j = l  

/fJ Igo(t)l dt>~yo>0 

[A(e')l l o L 
IAC(g)l ~>l~ L +  1 > 7 0 > 0  

with ~o not depending on m and d, so 

7o K IA(g)L~>l+yoT~ ( i / ( e , ) l + l A C ( g ) l ) = l + 7 o  

which proves (A.21). 
Since 7 does not depend on e', we get from (A.19) that the Lebesgue 

measure of the set 

A={t~[ao, bo] 4~< go(t) ~<~}  

is not less than 7 Ibo-aol ,  so 

f~oo fA fA dt~-~,rr >~2~ [bo-aol Igo(t)[dt>~ Igo(t)l dt>~ 4 Ibo-ao[ 

A similar estimate can be proven for any interval [a/, bj]: 

~j 7 [b/-  aj[, j = 0, 1 ..... m - 1 (A.22) bj Igo(t)[ dt>~ 
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Remark that 7o can be chosen independently of the splitting g(t) into 
go(t) + gl(t), so the last estimate contradicts the one of Eq. (A.18) if we 
choose 6 <70. This contradiction proves Theorem 4.3 in the case when 
(4.27a) holds for some sequence n =  (m, - n )  with m >>-mo(&). 

Let us consider now the case when (4.27b) holds for large m. Again 
the idea is to construct a number of intervals [aj, b;] for which (A.14), 
(A.15) are valid. We have 

Ilq(t)llLz= ~ If(lm, - l n ) l  cos[27zlm(t--  Aim)] 
l ~  1 L 2 

1 
>>----~_ If(m, -n) f  (A.23) 

and by (4.27b) 

JIq(t)rlc<~ 
l = 1  

IjY(lm,-ln)]<~ ~ l197(lm,-ln)l<~l+e~ (A.24) 
l =  1 g~O 

and 

dq( t ) ~ 1 + ~o 
<~m ~ l l~(Im, --In)[ <~m IjT(m, -n) ]  (A.25) 

[ dt c t : l  eo 

Besides, 

f]q( t) dt = 0 (A.26) 

It follows from (A.23) and (A.24) that 

1 
If(m, - n ) t 2 ~  IIq(t)ll2~<~ IIq(t)Hc ]lq(t)llL, ~< 1 + eo ,~,l 7'(m, IIq(t)lFL~ 

'~0 

so that 

eo ff(m, -n)[ 
IIq(t)llL~ /> 2(1 + eo) (A.27) 

Denote 

A6= {tlq(t)>~5} 
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It follows from (A.26) and (A.27) that 

fA 1 ao o q(t) dt =~  IIq(t)ll r, >/4(1 + eo) If(m, -n)[  (A.28) 

Now, for every 6 > 0, 

f Ao q(t) d t :  f A6 q(t) dt + f Ao\A6 q(t) dt 

~< IIq(t)tl c 5~(A~) + 65fl(Ao\A~) 

l + e o  
~< bT(m, --n)] 5e(As) + 6 

~o 

where Lf denotes the Lebesgue measure. Combining this with (A.28), we 
get that 

~o fa 4( l+so)  If(m' -n)l~< oq(t)dt<"l+a~ - n ) l ~ ( A 6 ) + 6  

Therefore for 

6 - ao If(m, -n) l  
8(1 + So) 

we have the estimate 

5fl(A6) ~> 8( 1 +eo)2 =)~>0 (A.29) 

Let to~A6, so that q(to)>& Then, for 

It--to1 < 
9 

16m(1 + eo) 2 - m 

we get by (A.25) that 

q(t)-q(to)<~m 1 + s______~o If(m, - n ) [ .  I t - to[  ~< [JT(m' -n)[  So 6 
ao 16(1 + eo) 2 

Hence, for I t -  tol <~#/m, 

q(t) >~ ~ So 
16(1 +eo) If(re' -n ) l  (A.30) 
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Because  of (A.29) o n e  can  f ind N =  F ( 2 / ( 2 / t ) ) m ]  po in t s  to ..... t N ~ E A ~  

such tha t  the i r  # / m - n e i g h b o r h o o d s  do n o t  intersect ,  a n d  for every t f rom 
those  n e i g h b o r h o o d s  (A.30) holds.  Th i s  impl ies  tha t  the  b o u n d s  (A.14) a n d  

(A.15) are also val id  in this case a n d  the  r e m a i n d e r  of the p r o o f  c an  be 
repea ted  w i t h o u t  change .  This  comple tes  the p r o o f  of  T h e o r e m  4.3. 
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